Differenze tra le versioni di "Appunti Arch Linux"
(→Nix) |
|||
Riga 837: | Riga 837: | ||
[https://nixos.wiki/wiki/Nix_package_manager Nix package manager] è il gestore di pacchetti utilizzato su [https://nixos.org/ NixOS]. È possibile però utilizzarlo su qualsiasi distribuzione Linux affiancandone il gestore di pacchetti predefinito. | [https://nixos.wiki/wiki/Nix_package_manager Nix package manager] è il gestore di pacchetti utilizzato su [https://nixos.org/ NixOS]. È possibile però utilizzarlo su qualsiasi distribuzione Linux affiancandone il gestore di pacchetti predefinito. | ||
+ | Nix analizza le istruzioni di compilazione (riproducibili) specificate in un file secondo il suo linguaggio di espressione, i risultati di questa compilazione sono archiviati secondo indirizzi univoci identificati da un hash e completi del loro intero albero delle dipendenze. Si crea così un archivio immutabile di pacchetti che consente aggiornamenti atomici, rollback e installazione simultanea di diverse versioni di un pacchetto. | ||
− | + | [https://nixos.org/manual/nixpkgs/stable/ Guida completa] | |
=== Installazione === | === Installazione === | ||
[https://nixos.org/download.html#nix-install-linux Guida ufficiale] | [https://nixos.org/download.html#nix-install-linux Guida ufficiale] | ||
+ | |||
+ | '''Single-user installation''' | ||
+ | $ sudo install -d -m755 -o $(id -u) -g $(id -g) /nix | ||
+ | $ sh <(curl -L https://nixos.org/nix/install) --no-daemon | ||
+ | |||
+ | Aggiungere la riga seguente al <code>.bashrc</code> o al file di configurazione della vostra shell per poter utilizzare i comandi Nix | ||
+ | $ source $HOME/.nix-profile/etc/profile.d/nix.sh | ||
=== Canali === | === Canali === |
Versione delle 16:41, 2 mar 2023
Arch Linux è una distribuzione Linux leggera ed improntata alla riga di comando. Ufficialmente non è dotata di un installer grafico e perciò non è considerata adatta ai principianti, l'installazione di default consiste in un sistema base sul quale l'utente potrà manualmente aggiungere e configurare tutto quello di cui necessita.
Fornisce l'ultima versione stabile della maggior parte del software opensource disponibile per Linux e lo fa seguendo un modello di distribuzione detto "rolling-release", il suo aggiornamento è quindi continuo e non richiede periodici passaggi da una versione stabile alla successiva.
Il prezzo da pagare è che talvolta gli aggiornamenti (soprattutto: kernel, driver video e librerie) possono determinare problemi talmente gravi al sistema da renderlo inutilizzabile. Per fortuna accorgimenti come lo snapshot del filesystem che, se utilizzati correttamente dall'utente, sono capaci di ovviare a tali problematiche.
Supporti d'installazione
- ISO ufficiale archlinux-x86_64.iso
- ISO con supporto per lo ZFS archlinux-archzfs-linux.iso
- ISO con installer grafico Calamares ALCI
Preparazione del disco
Su Linux si può scegliere (salvo casi estremamente particolari) tra due tipi di tabella delle partizioni
- msdos (Master Boot Record o più semplicemente MBR)
- GPT (GUID Partition Table)
In linea generale è consigliabile di scegliere il GPT perché è un formato più moderno ed ha meno limitazioni rispetto all'MBR risalente ai tempi dell'MS-DOS.
I casi in cui è preferibile utilizzare la tabella msdos sono:
- dual-boot con Windows (32-bit o 64-bit) con la scheda madre in modalità Legacy BIOS
- in schede madri molto datate il BIOS potrebbe non supportare lo schema GPT (esiste comunque un trucco per aggirare l'ostacolo)
Vantaggi di GPT su MBR:
- offre un sistema di denominazione delle partizioni indipendente dal filesystem (PARTLABEL, PARTUUID)
- supera il concetto di partizione primaria ed estesa (su MBR il numero massimo di partizioni primarie, quelle su cui si può installare un sistema operativo è limitato a 4). Su GPT, nella configurazione standard, si possono definire fino a 128 partizioni.
- la grandezza massima di un disco è di 2 ZiB, mentre su MBR 2 TiB
- permette di fare a meno della tradizionale partizione di /boot con i filesystem BTRFS e ZFS in modo da semplificare la gestione degli snapshot.
Schede madri BIOS
Creare due partizioni.
- BIOS GRUB Partition: concettualmente l'equivalente dell'MBR dei sistemi GPT. A differenza di quest'ultimo, la cui dimensione è di soli 512 byte, la BIOS GRUB Partition può però essere sufficientemente grande da contenere i driver per il supporto di un filesystem come ZFS o BTRFS. Il contenuto di questa partizione cambia esclusivamente nei rari casi di upgrade del GRUB perché non vi risiedono né kernel né ramdisk.
- Linux filesystem: successivamente da formattare col filesystem di nostra scelta: BTRFS, ZFS, ext4, XFS, JFS.
Partizionamento
Col seguente comando verrà creata la partizione BIOS GRUB (EF02) a partire dal 1MB, della grandezza di 64MB; il resto del disco resterà disponibile per il filesystem di Linux.
Se avete più dischi da utilizzare in raid, questa operazione andrà ripetuta per ciascun disco.
# sgdisk \ --new=1:2048:133120 --typecode=1:EF02 --change-name=1:"GRUB" \ --largest-new=2 --typecode=2:8300 --change-name=2:"ROOT" /dev/sda
La seconda partizione dovrà poi essere formattata con uno dei filesystem supportati da Linux (ext4, btrfs, xfs...)
# mkfs.btrfs /dev/sda2
Schede madri UEFI
Creare due partizioni.
- EFI: è una partizione in formato FAT32 necessaria per l'avvio dei sistemi operativi nei PC con schede madri UEFI.
- Linux filesystem: successivamente da formattare col filesystem di nostra scelta: BTRFS, ZFS, ext4, XFS, JFS.
Partizionamento
Col seguente comando verrà creata la partizione EFI (EF00) a partire dal 1MB, della grandezza di 512MB; il resto del disco resterà disponibile il filesystem di Linux.
# sgdisk \ --new=1:2048:1064960 --typecode=1:EF00 --change-name=1:"efi" \ --largest-new=2 --typecode=2:8300 --change-name=2:"ROOT" /dev/sda
La partizione EFI dovrà poi essere formattata in FAT32
# mkfs.vfat -T32 /dev/sda1
La seconda partizione dovrà poi essere formattata con uno dei filesystem supportati da Linux (ext4, btrfs, xfs...)
# mkfs.btrfs /dev/sda2
Filesystem
Su Linux, a seconda di ciò di cui abbiamo bisogno, è possibile scegliere tra numerosi filesystem. Le principali opzioni sono le seguenti:
- BTRFS: supporta nativamente sottovolumi, snapshot ed il raid 0, 1 e 5; ma non la crittografia.
- EXT4: il FS storico di Linux, evoluzione di ext3. Supporta nativamente la crittografia dei dati, ma non gestisce autonomamente né RAID, né snapshots.
- ZFS: non è supportato direttamente da Linux, ha bisogno di un driver esterno per funzionare e ciò, per gli utenti meno smaliziati, potrebbe complicare le operazioni di ripristino di sistema in caso di problemi. Supporta il raid 0, 1 e z (una variante del raid5 che permette, grazie ad un meccanismo di scrittura dei dati detta "write-atomicity" di evitare la perdita di dati anche in caso di improvviso spegnimento improvviso del computer), gli snapshot, i sottovolumi e la cifratura dei dati. Non è però possibile modificare la composizione di un raid una volta creato.
- XFS + LVM: accoppiare il filesystem xfs al gestore di volumi di LVM è il modo con cui RedHat (IBM) ha scelto di implementare le funzionalità di raid e snapshots nella propria distribuzione.
Ritengo BTRFS il miglior compromesso tra facilità d'uso e caratteristiche supportate perciò in questa guida mi concentrerò unicamente su quest'ultimo.
Creazione del filesystem
# mkfs.btrfs /dev/partizione
Montaggio del filesystem
# mount -o compress=lzo /dev/partizione /mnt/punto_mount
(Si consiglia di usare l'opzione di compressione del filesystem per migliorare le performance ed ottimizzare l'utilizzo dello spazio)
Subvolumi
- Creare un subvolume
# btrfs subvolume create subvolume
- Controllare i subvolumi presenti sul sistema
# btrfs subvolume list /
In una tipica installazione Ubuntu avremo un output di questo tipo
ID 257 gen 9755 top level 5 path @ ID 292 gen 7624 top level 5 path @home
@ è il nome del subvolume contenente la root / del filesystem @home è il nome del subvolume della /home
Montaggio di un subvolume
# mount -o subvol=subvolume /dev/partizione /mnt/punto_mount
fstab
Normalmente la root di sistema viene collocata in un subvolume (es.: @), per poter effettuare opzioni di snapshot etc e consigliabile montare il filesystem con l'opzione subvolid=0. Nella directory di mount saranno visibili tutti i subvolumi e le snapshot della partizione e sarà quindi possibile effettuare tutte le operazioni indicate nei passaggi successivi.
Ecco un /etc/fstab di esempio
LABEL=ROOT / btrfs defaults,compress=lzo,subvol=@ 0 0 LABEL=ROOT /home btrfs defaults,compress=lzo,subvol=@home 0 0 LABEL=ROOT /mnt/btrfs btrfs defaults,noauto,subvolid=0,compress=lzo 0 0
Montando la partizione con label ROOT su /mnt/btrfs saranno visibili tutti i subvolumi.
Conversione da Ext3/4 a Btrfs
# btrfs-convert /dev/partizione
Automaticamente è creata una snapshot contenente il vecchio filesystem (/ext2_saved)
In caso di problemi può essere montata col comando
# mount -t btrfs -o subvol=ext2_saved /dev/xxx /ext2_saved # mount -t ext3 -o loop,ro /ext2_saved/image /ext3
Se tutto è andato a buon fine può invece essere eliminata
# btrfs subvolume delete /ext2_saved
Riparazione di un filesystem danneggiato
- Direttamente sul filesystem montato
# btrfs scrub start -B /dev/partizione
o anche direttamente sulla root
# btrfs scrub start -B /
- Sul disco smontato
# btrfs check --repair /dev/partizione
Quote
Per limitare le dimensioni di un subvolume è possibile abilitare la gestione delle quote.
Utilizzare il seguente comando su un filesystem btrfs appena creato e privo di subvolumi
# btrfs quota enable volume
Se invece le quote non sono state abilitate subito su tutto il filesystem è necessario creare un qgroup (quota group) per ogni subvolume utilizzando il rispettivo ID e successivamente fare una scansione delle quote.
# btrfs subvolume list <path> | cut -d' ' -f2 | xargs -I{} -n1 btrfs qgroup create 0/{} <path> # btrfs quota rescan <path>
Assegnare una quota limite ad un subvolume
# btrfs qgroup limit size /volume/subvolume
Es.:
# btrfs qgroup limit 20g /mnt/@ # btrfs qgroup limit 100g /mnt/@home
Scoprire la quantità di spazio utilizzata da un subvolume
# btrfs qgroup show <path>
Snapshots
Data la natura instabile delle distribuzioni rolling-release come Arch Linux ritengo praticamente obbligatorio per la partizione di / l'utilizzo di un filesystem che supporti gli snapshot.
- Effettuare uno snapshot
# btrfs subvolume snapshot @ rootsnap
Nell'esempio abbiamo effettuato il backup del filesystem di root e l'abbiamo chiamato rootsnap
- Montare un subvolume/snapshot
# mount -t btrfs -o subvol=rootsnap /dev/partizione /mnt/snapshot
- Cancellare un subvolume/snapshot
# btrfs subvolume delete rootsnap
Backup
Le snapshot possono essere salvate su un disco esterno, a patto che questo abbia un file system btrfs. L'operazione di trasferimento può essere effettuata soltanto su snapshot in sola lettura. Si ipotizza che il proprio disco di sistema sia montato in /mnt/btrfs ed il disco esterno in /mnt/ext
- Creare la snapshot in sola lettura (opzione -r) oppure impostare il flag di sola lettura ad una snapshot già fatta
btrfs subvolume snapshot -r @root @root-yymmdd-ro btrfs property set /mnt/btrfs/@root-yymmdd-ro ro true
- Trasferire la snapshot sul disco esterno.
btrfs send /mnt/btrfs/@root-yymmdd-ro | btrfs receive /mnt/ext
- Quando necessario, ripristinare la snapshot
btrfs send /mnt/ext/@root-yymmdd-ro | btrfs receive /mnt/btrfs/
- Eventualmente, rinominare la snapshot e reimpostare i privilegi di scrittura
mv /mnt/ext/{@root-yymmdd-ro,@root} btrfs property set /mnt/btrfs/@root ro false
Cifratura
Alternative
- Ext4 gestisce la cifratura di una directory tramite l'utility Fscrypt
- ZFS supporta la cifratura dei pool
RAID
RAID 0
# mkfs.btrfs -d raid0 /dev/sda1 /dev/sdb1
Montare il raid
# mount /dev/sda1 /mnt
(È equivalente a mount /dev/sdb1 /mnt, il sistema riconosce che è presente un raid 0 e provvede al montaggio corretto dei dischi)
Verifica del montaggio
# btrfs filesystem show /mnt
Label: none uuid: 4714fca3-bfcb-4130-ad2f-f560f2e12f8e Total devices 2 FS bytes used 27.75GiB devid 1 size 136.72GiB used 17.03GiB path /dev/sda1 devid 2 size 136.72GiB used 17.01GiB path /dev/sdb1
Aggiungere una partizione
# btrfs device add /dev/sdc1 /mnt
# btrfs filesystem show /mnt Label: none uuid: 4714fca3-bfcb-4130-ad2f-f560f2e12f8e Total devices 3 FS bytes used 27.75GiB devid 1 size 136.72GiB used 17.03GiB path /dev/sda1 devid 2 size 136.72GiB used 17.01GiB path /dev/sdb1 devid 3 size 136.72GiB used 0.00 path /dev/sdc1
Adesso è necessario effettuare una redistribuzione dei dati sui tre dischi
# btrfs balance start -d -m /mnt
# btrfs filesystem show /mnt Label: none uuid: 4714fca3-bfcb-4130-ad2f-f560f2e12f8e Total devices 3 FS bytes used 27.78GiB devid 1 size 136.72GiB used 10.03GiB path /dev/sda1 devid 2 size 136.72GiB used 10.03GiB path /dev/sdb1 devid 3 size 136.72GiB used 11.00GiB path /dev/sdc1
Rimuovere un device
# btrfs device delete /dev/sdb1 /mnt
L'operazione può impiegare parecchio tempo e per andare a buon fine sui dischi rimanenti deve essere rimasto sufficiente spazio libero da ospitare i dati contenuti nel device che vogliamo togliere dal raid.
RAID 1
# mkfs.btrfs -d raid1 -m raid1 /dev/sda1 /dev/sdb1
RAID 5
Conversione a RAID5
# btrfs balance start -dconvert=raid5 -mconvert=raid5 /punto_di_mount
Sostituzione device danneggiato
# btrfs replace start /dev/sdb1 /dev/sdc1 /punto_di_mount
In alcuni casi potrebbe essere necessario montare il filesystem in modalità degraded (con l'opzione -o degraded) e lanciare il successivo comando per eliminare definitivamente il device dal raid.
# btrfs device delete missing /mnt
Alternative
- EXT4 + mdadm
- ZFS
LVM
https://guide.debianizzati.org/index.php/LVM:_introduzione
https://blog.golem.linux.it/2020/05/lvm-cache-su-ssd/
https://www.lffl.org/2020/04/guida-sysadmin-istruzioni-lvm.html
https://tldp.org/HOWTO/LVM-HOWTO/snapshots_backup.html
Boot loader
Anche in questo caso sarebbe possibile scegliere tra più bootloader: GRUB, Lilo, Syslinux o addirittura il bootloader integrato del systemd (systemd-boot). Ma dato che GRUB è utilizzabile pressoché in ogni circostanza: schede madri BIOS, UEFI; Secure Boot, hard disk, floppy, CD-ROM... in questa guida mi limiterò alla sua configurazione, tralasciando le alternative.
Sistema con BIOS
# pacman -S grub # grub-mkconfig -o /boot/grub/grub.cfg # grub-install /dev/sda
Sistema UEFI
# pacman -S grub # mkdir /boot/EFI # mount /dev/sda1 /boot/EFI # grub-install --target=x86_64-efi --efi-directory=$esp --bootloader-id=grub --recheck --debug # grub-mkconfig -o /boot/grub/grub.cfg
Gestione delle snapshot
Manuale
Editare /etc/grub.d/40_custom (o crearlo) e aggiungere quanto segue per permettere l'avvio della snapshot rootsnap
menuentry 'Linux snapshot' { insmod gzio insmod part_gpt insmod btrfs set root='hd1,gpt3' linux /rootsnap/boot/vmlinuz-linux root=/dev/partizione rw rootflags=subvol=rootsnap quiet initrd /rootsnap/boot/initramfs-linux.img }
dopodichè aggiornare la configurazione di GRUB con
# grub-mkconfig -o /boot/grub/grub.cfg
Automatico
Per facilitare la gestione lei sottovolumi e delle snapshot del BTRFS Arch offre il pacchetto grub-btrfs, la sua installazione provvederà ad aggiungere tutti i sottovolumi contenenti un sistema Linux al menu di grub.
# pacman -S grub-btrfs
Ogni volta che si vorrà aggiornare grub con nuovi subvolumi basterà dare il seguente comando
# grub-mkconfig -o /boot/grub/grub.cfg
Ripristinare GRUB
Aggiornando la propria distribuzione Linux, il proprio boot loader o installando un altro sistema operativo (es. Windows) può capitare di sovrascrivere il MBR.
Avviare il computer con un liveCD/DVD o USB:
Ipotizziamo di avere una partizione / chiamata /dev/sda2 e nessuna /boot
Creiamo i seguenti mount point
# sudo su # cd /mnt # mkdir sda2 # mount /dev/sda2 /mnt/sda2
Se utilizziamo una scheda madre UEFI andrà montata anche la partizione efi (solitamente è la prima partizione del disco sda1)
# mount /dev/sda2 /mnt/sda2/boot/efi
Se necessario editiamo il file di configurazione di grub
# nano /mnt/sda2/boot/grub/grub.cfg
arch-chroot
Se stiamo utilizzando un sistema basato su Arch Linux, utilizzando l'utility arch-chroot presente nel pacchetto arch-install-scripts potremo automatizzare il processo di chroot con un solo comando
# arch-chroot /mnt/sda2
Manuale
# mount --rbind /dev /mnt/sda2/dev # mount -t proc /proc /mnt/sda2/proc # mount -t sysfs /sys /mnt/sda2/sys/
Eseguiamo il vero e proprio chroot in /dev/sda2
# chroot /mnt/sda2
Reinstallazione
# grub-mkconfig -o /boot/grub/grub.cfg # grub-install /dev/sda
Riavvio del sistema
Usciamo dal chroot, smontiamo la partizione e riavviamo il sistema
# exit # umount /mnt/sda1/proc # umount /mnt/sda1/dev # umount /mnt/sda1 # systemctl reboot
Networking
Manuale
net-tools
Storica serie di utility per gestire le interface di rete, presente da decenni nell'installazione base della maggior parte delle distribuzioni Linux, ma attualmente considerata obsoleta. Tra i suoi comandi principali: arp, hostname, ifconfig, iptunnel netstat e route.
Attivare l'interfaccia di rete eth0 ed assegnarle l'indirizzo ip 192.168.0.2
# ifconfig eth0 192.168.0.2 up
Disattivare l'interfaccia di rete eth0
# ifconfig eth0 down
Assegnare manualmente un gateway (es.: 192.168.0.1) alla rete
# route add default gw 192.168.0.1
Ovviamente occorrerà aggiungere un server DNS al file /etc/resolv.conf
per la risoluzione degli indirizzi.
iproute2
net-tools | iproute2 | Note |
---|---|---|
ifconfig | ip addr, ip link | Address and link configuration |
route | ip route | Routing tables |
arp | ip neigh | Neighbors |
iptunnel | ip tunnel | Tunnels |
nameif, ifrename | ip link set name | Rename network interfaces |
ipmaddr | ip maddr | Multicast |
netstat | ss, ip route | Show various networking statistics |
brctl | bridge | Handle bridge addresses and devices |
Elencare gli indirizzi IP:
# ip addr
Mostra le informazioni di una specifica interfaccia di rete
# ip addr show eth0
Aggiungere un indirizzo all'interfaccia eth0:
# ip address add 192.0.2.10/24 dev eth0
Cancellare un indirizzo associato all'interfaccia eth0:
# ip address delete 192.0.2.10/24 dev eth0
Attivare l'interfaccia eth0:
# ip link set dev eth0 up
Disattivare l'interfaccia eth0:
# ip link set dev eth0 down
Svuotare la cache arp per tutte le interfacce:
# ip neigh flush all
Aggiungere un nuovo indirizzo all'interfaccia eth0:
# ip address add 192.0.2.20/24 dev eth0
Aggiungere una rotta che passa per gateway 192.0.2.1
# ip route add 192.0.2.128/25 via 192.0.2.1
Mostrare la tabella di routing
# ip route show
Systemd
systemd-networkd è un demone, parte di systemd, che gestisce la configurazione della rete.
Esempi di configurazione
To use systemd-networkd, start/enable systemd-networkd.service.
Wired adapter using DHCP
/etc/systemd/network/20-wired.network
[Match] Name=enp1s0 [Network] DHCP=yes
Wired adapter using a static IP
/etc/systemd/network/20-wired.network
[Match] Name=enp1s0 [Network] Address=10.1.10.9/24 Gateway=10.1.10.1 DNS=10.1.10.1
Address can be used more than once to configure multiple IPv4 or IPv6 addresses.
Wireless adapter
In order to connect to a wireless network with systemd-networkd, a wireless adapter configured with another application such as wpa_supplicant or iwd is required.
/etc/systemd/network/25-wireless.network
[Match] Name=wlp2s0 [Network] DHCP=yes IgnoreCarrierLoss=3s
If the wireless adapter has a static IP address, the configuration is the same (except for the interface name) as in a wired adapter.
To authenticate to the wireless network, use e.g. wpa_supplicant or iwd.
Wired and wireless adapters on the same machine
This setup will enable a DHCP IP for both a wired and wireless connection making use of the metric directive to allow the kernel to decide on-the-fly which one to use. This way, no connection downtime is observed when the wired connection is unplugged.
The kernel's route metric (same as configured with ip) decides which route to use for outgoing packets, in cases when several match. This will be the case when both wireless and wired devices on the system have active connections. To break the tie, the kernel uses the metric. If one of the connections is terminated, the other automatically wins without there being a gap with nothing configured (ongoing transfers may still not deal with this nicely but that is at a different OSI layer).
Metric option is for static routes while the RouteMetric option is for setups not using static routes.
/etc/systemd/network/20-wired.network
[Match] Name=enp1s0 [Network] DHCP=yes [DHCPv4] RouteMetric=10
/etc/systemd/network/25-wireless.network
[Match] Name=wlp2s0 [Network] DHCP=yes [DHCPv4] RouteMetric=20
If using IPv6, you will need to separately set the metric for the IPv6 routes too, such as:
/etc/systemd/network/20-wired.network
... [IPv6AcceptRA] RouteMetric=10
/etc/systemd/network/25-wireless.network
... [IPv6AcceptRA] RouteMetric=20
Renaming an interface
Instead of editing udev rules, a .link file can be used to rename an interface. A useful example is to set a predictable interface name for a USB-to-Ethernet adapter based on its MAC address, as those adapters are usually given different names depending on which USB port they are plugged into.
/etc/systemd/network/10-ethusb0.link
[Match] MACAddress=12:34:56:78:90:ab [Link] Description=USB to Ethernet Adapter Name=ethusb0
Wifi
Programmi | WEXT | nl80211 | WEP | WPA |
---|---|---|---|---|
wireless_tools | Sì | No | Sì | No |
iw | No | Sì | Sì | No |
wpa_supplicant | Sì | Sì | No | Sì |
iwd/iwgtk | No | Sì | No | Sì |
NetworkManager
NetworkManager è una utility che si è imposta come standard per la configurazione della reti Linux (LAN e Wifi)
Si compone di un demone, un'interfaccia da riga di comando (nmcli) ed un'interfaccia di configurazione basata su un menu testuale (nmtui).
I principali desktop enviroment come GNOME e KDE Plasma possiedono una utility grafica che consente loro di configurare graficamente le reti basandosi su NetworkManager.
Installazione
# pacman -S networkmanager # systemctl enable NetworkManager # systemctl start NetworkManager
Configurazione
- Menu di configurazione: qualora si utilizzi un sistema privo di interfaccia grafica e si desideri configurare una rete wifi si consiglia caldamente l'utilizzo dell'applicazione
nmtui
- Per chi dovesse prediligere la configurazione manuale:
nmcli
Alternative
Condividere la connessione
Abilitazione del forwarding dei pacchetti
$ sudo echo 1 > /proc/sys/net/ipv4/ip_forward
Per rendere il forwarding definitivo editare il file /etc/sysctl.conf modificando come segue il parametro net.ipv4.ip_forward:
net.ipv4.ip_forward = 1
Mascheramento dei pacchetti
$ sudo iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE
eth0 non è un parametro fisso, identifica l'interfaccia con la quale il PC si connette ad Internet
Per applicare automaticamente tale regola ad ogni riavvio
# iptables-save > /etc/iptables.ipv4.nat # iptables-restore < /etc/iptables.ipv4.nat
Moduli kernel
Assicurarsi che siano caricati i seguenti moduli:
# modprobe ip_tables # modprobe ip_conntrack # modprobe iptable_nat # modprobe ipt_MASQUERADE
Condivisione tramite rete ethernet
Configurazione scheda di rete interna
Assegnare un IP statico alla scheda ethernet con la quale si vuol condividere la connessione.
# ifconfig eth1 192.168.5.1 netmask 255.255.255.0 up
Per rendere tale configurazione permanente sarà necessario editare il file /etc/network/interfaces ed aggiungere la seguente configurazione
auto eth1 iface eth1 inet static address 192.168.5.1 netmask 255.255.255.0
Condivisione tramite rete WI-FI
Configurazione scheda wireless
Se non si desidera cifrare la rete e proteggerla con una password sarà sufficiente eseguire questi comandi.
# iwconfig wlan0 mode Master # iwconfig wlan0 ESSID ReteGOLEM # iwconfig wlan0 enc off # ifconfig wlan0 192.168.5.1 netmask 255.255.255.0 up
Per rendere tale configurazione permanente sarà necessario editare il file /etc/network/interfaces ed aggiungere la seguente configurazione
iface wlan0 inet loopback address 192.168.5.1 netmask 255.255.255.0
Proteggere la connessione WI-FI
Installare il programma hostapd
# pacman -S hostapd
Configurare hostapd modificando /etc/hostapd/hostapd.conf
# Interfaccia di rete interface=wlan0 # Driver della scheda wifi usata (non tutte le schede sono supportate) driver=nl80211 # Nome della rete (SSID) ssid=ReteGOLEM hw_mode=g # Canale di trasmissione channel=6 macaddr_acl=0 # Righe per la protezione auth_algs=1 ignore_broadcast_ssid=0 wpa=2 # Password del wifi wpa_passphrase=password wpa_key_mgmt=WPA-PSK wpa_pairwise=TKIP rsn_pairwise=CCMP
Editare il file /etc/default/hostapd per impostare hostapd.conf come file di configurazione predefinito, modificando la riga DAEMON_CONF="":
DAEMON_CONF="/etc/hostapd/hostapd.conf"
Assegnazione automatica degli IP ai client
# pacman -S dhcp
Editare /etc/dhcpd.conf aggiungendo la configurazione per la rete interna (es.: eth1 o wlan0):
subnet 192.168.5.0 netmask 255.255.255.0 { range 192.168.5.100 192.168.5.200; option domain-name-servers 8.8.8.8; }
Container
Toolbox
Toolbox è un tool che permette di creare ed utilizzare container che si integrano col sistema host accedendo ad ogni sua risorsa: directory home dell'utente, X11/Wayland, networking, periferiche esterne. Tutto senza dover mettere mano a nessun file di configurazione. È il modo più semplice per di integrare più distribuzioni all'interno di una stessa macchina Linux.
Immagini
- https://github.com/toolbx-images/images Container contenenti le principali distribuzioni
Comandi
Creare un container
$ toolbox create -i quay.io/toolbx-images/rhel-toolbox:9.1 -c redhat
Entrare in un container
$ toolbox enter redhat
Rimuovere un container
$ toolbox rm -f redhat
Rimuovere un container e la sua immagine
$ toolbox rmi redhat
Esaminare la lista dei container e delle immagini disponibili
$ toolbox list
Eseguire un comandi all'interno di un container
$ toolbox run -c redhat libreoffice
LXC
Linux Container (LXC) permette di virtualizzare uno o più container Linux su un singolo host LXC, gestendone virtualmente RAM, CPU, socket e rete.
È estremamente utile quando si ha bisogno di isolare dei servizi dal sistema host: es.: server web, imap, smtp...
Installazione
Installare LXC
# pacman -S lxc lxc-templates lxcfs lxd
Comandi
Lista dei container installati
lxc-ls -f
Installare un container scegliendo l'immagine dalla lista di quelli disponibili
lxc-create -n playtime -t download
Se sapete già di quale container avete bisogno sarà possibile scaricarlo direttamente
lxc-create -n playtime -t download -- --dist archlinux --release current --arch amd64
Far partire il container chiamato debian
lxc-start debian
Entrare dentro il container chiamato debian
lxc-attach debian
Fermare l'esecuzione del container chiamato debian
lxc-stop debian
Rimuovere il container chiamato debian
lxc-destroy debian
Eseguire un comando dentro il container chiamato debian
lxc-attach --name debian nano
Rete Bridge
Nel caso si debbano usare servizi da tenere esposti su Internet potrebbe essere conveniente utilizzare una rete bridge piuttosto che NAT.
Configurazione rete bridge.
Alternative
Fonti software alternative
Nella rara eventualità che si necessiti di un programma non presente né nei repository ufficiali, né su AUR è possibile optare per una delle seguenti opzioni.
AppImage
Scaricate qualsiasi pacchetto disponibile su appimage.github.io e rendetelo eseguibile.
$ chmod a+x nomeprogramma.AppImage
Non resta che eseguirlo col seguente comando o con un doppio click
$ ./nomeprogramma.AppImage
Flatpak
Concepito per essere una sorta di Google Play Store per GNOME, è possibile installare programmi provenienti da flatpak utilizzando i normali gestori grafici di pacchetti basati su packagekit come Gnome Software o Discover di Plasma.
Installazione
# pacman -S flatpak
Abilitazione del repository ufficiale del progetto (software di terze parti potrebbe richiedere di aggiungere altri repository)
# flatpak remote-add --if-not-exists flathub https://flathub.org/repo/flathub.flatpakrepo
Elenca i repository disponibili.
$ flatpak remotes
Installa un'applicazione (es.: libreoffice)
$ flatpak install flathub org.libreoffice.LibreOffice
Esegue un'applicazione (es.: libreoffice)
$ flatpak run org.libreoffice.LibreOffice
Disinstalla un'applicazione mantenendo i dati.
$ flatpak uninstall <nome app>
Disinstalla un'applicazione eliminando i dati (nella home utente .var/app/).
$ flatpak uninstall <nome app> --delete-data
Elimina i dati di tutte le applicazioni disinstallate (nella home utente .var/app/).
$ flatpak uninstall --delete-data
Disinstalla tutte le applicazioni flatpak installate sul sistema.
$ flatpak uninstall --all
Cerca ed esegue aggiornamenti per le applicazioni installate.
$ flatpak update
Aggiorna una singola applicazione.
$ flatpak update <nome app>
Elenca tutte le applicazioni flatpak installate sul sistema.
$ flatpak list --app
Elenca i runtime installati.
$ flatpak list --runtime
Visualizzare le informazioni sulle applicazioni in esecuzione.
$ flatpak ps
Termina un'applicazione bloccata o danneggiata (l'ID dell'istanza si può ottenere dal comando precedente).
$ flatpak kill <id istanza>
Tenta la riparare dei pacchetti danneggiati. Necessita dei privilegi di amministrazione.
$ flatpak repair
Nix
Nix package manager è il gestore di pacchetti utilizzato su NixOS. È possibile però utilizzarlo su qualsiasi distribuzione Linux affiancandone il gestore di pacchetti predefinito.
Nix analizza le istruzioni di compilazione (riproducibili) specificate in un file secondo il suo linguaggio di espressione, i risultati di questa compilazione sono archiviati secondo indirizzi univoci identificati da un hash e completi del loro intero albero delle dipendenze. Si crea così un archivio immutabile di pacchetti che consente aggiornamenti atomici, rollback e installazione simultanea di diverse versioni di un pacchetto.
Installazione
Single-user installation
$ sudo install -d -m755 -o $(id -u) -g $(id -g) /nix $ sh <(curl -L https://nixos.org/nix/install) --no-daemon
Aggiungere la riga seguente al .bashrc
o al file di configurazione della vostra shell per poter utilizzare i comandi Nix
$ source $HOME/.nix-profile/etc/profile.d/nix.sh
Canali
Il software è distribuito attraverso in repository chiamati canali nei quali può essere disponibile in forma già precompilata binary cache o come sorgente da compilare. Questi canali determinano la versione dei pacchetti disponibili categorizzandoli nei rami stabile ed instabile.
Ecco di seguito i comandi principali per gestire questi canali
Lista dei canali configurati
$ nix-channel --list
Aggiungere il canale principale (nixos)
$ nix-channel --add https://nixos.org/channels/channel-name nixos
Aggiungere altri canali
$ nix-channel --add https://some.channel/url my-alias
Rimuovere un canale
$ nix-channel --remove channel-alias
Aggiornare un canale
$ nix-channel --update channel-alias
Aggiornare tutti i canali
$ nix-channel --update
Comandi
Cercare un pacchetto
$ nix search nixpkgs packagename
Installare un pacchetto
$ nix-env -iA packagename
Vedere i pacchetti installati
$ nix-env -q
Disinstallare un pacchetto
$ nix-env -e packagename
Aggiornare tutti i pacchetti
$ nix-env -u
Snap
- Systemd
systemd-udevd - successor of devfsd, hwdetect and hotplug, manages device in /dev by adding, symlinking and renaming them systemd-boot — simple UEFI boot manager; systemd-cryptenroll — Enroll PKCS#11, FIDO2, TPM2 token/devices to LUKS2 encrypted volumes; systemd-firstboot — basic system setting initialization before first boot; systemd-homed — portable human-user accounts; systemd-logind — session management; systemd-networkd — network configuration management; systemd-nspawn — light-weight namespace container; https://wiki.archlinux.org/title/systemd-nspawn systemd-resolved — network name resolution; systemd-timesyncd — system time synchronization across the network; systemd/Journal — system logging systemd/Timers — alternative to cron
Bibliografia
https://wiki.archlinux.org/title/Installation_guide
https://wiki.golem.linux.it/Howto
https://wwwcdf.pd.infn.it/AppuntiLinux/a21.htm
https://www.linuxfromscratch.org/lfs/downloads/stable/LFS-BOOK-11.2-NOCHUNKS.html